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Stress intensity factors and CODs defined by 
in-plane displacements measured by scanning 
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A method is developed for evaluating the displacement field around the tip of a crack in a 
plate under plane stress or strain conditions by executing a number of measurements in this 
area through the scanning electron microscope. Several spots were created around the crack 
tip by using the electron beam of the SEM, which were used as reference points. A theory 
was developed which yields the components of the in-plane displacements and their differen- 
ces from the coordinates of the reference spots measured through SEM. The method presents 
the advantage that its results are independent of the exact position of the crack tip and 
therefore it is suitable for performing measurements very close to this tip. Experimental evi- 
dence with plexiglas plates showed the validity of the method for defining the displacement 
field as well as the values of crack opening displacements and the stress intensity factor. 

1. In troduc t ion  
One of the most interesting problems in fracture 
mechanics is the evaluation of the displacements 
around crack tips, which permits the computation of 
the respective stress intensity factor, and the crack 
opening displacement (COD) field along the crack 
flanks. The problem becomes more pronounced in the 
case of edge cracks where exact solutions do not exist. 
Thus, the development of an experimental technique 
to measure accurately these quantities around the 
crack tip is considered worthwhile. 

Existing experimental methods are mainly based on 
the mechanical or optical interferometry methods. 
These techniques are the Moir~ method [1, 2], the 
holographic Moir6 method [3-6], the speckle inter- 
ferometry method [7-9] and the SEM-stereoimaging 
method [10], while a few "isolated" methods, like 
those based on ultrasonic measurements [11] and 
special optoelectronic systems [12] could be also 
mentioned. 

A common characteristic of the three methods 
based on interferometry is the indirect evaluation of 
the displacement field by means of a fringe pattern, 
which, especially for the case of the holographic Moir6 
method, is connected with the well-known difficulty in 
the unambiguous determination of the fringe orders. 

Moreover, the first and second of the above meth- 
ods have an additional handicap as they require the 
difficult construction on the specimen of highly accu- 
rate special high-frequency phase grating to achieve 
acceptable sensitivity. It must also be noted that the 
sensitivity of the third method is, in fact, limited by the 
optical apparatus, which does not permit accurate 
localization of the crack tip. 

Furthermore, because the stress and displacement 
fields around the crack tip are rapidly changing with 
the polar distance from the crack tip and there is a 
strong variation of the thickness of the plate creating 
a dimple around the crack tip, the mode of evaluation 
of the displacements by the Moir+ method and the 
holographic interferometry method, based on several 
neighbouring fringes, forcibly introduces a large error 
in the evaluation of displacements. Moreover, the lack 
of flatness in the vicinity of the crack tip is another 
source of error for ali three optical methods. 

On the other hand, the stereoscopic processing of 
photographs, which is connected with parallax errors 
and the poor magnification of photographs, consider- 
ably restricts the accuracy of the SEM-stereoimaging 
method. Finally, all the above methods are inherently 
connected with errors due to rigid body rotation. 

In the method developed in this paper an experi- 
mental technique for the direct evaluation of the dis- 
placement field is developed, using scanning electron 
microscope measurements. Initially, the displace- 
ments, which are expressed in power series form [13], 
are analysed resulting in a system of linear equations, 
whose solution gives the whole displacement field 
around the crack-tip. In order to solve this linear 
system the relative displacements of only two arbi- 
trary points are required, which can be readily 
achieved by scanning electron microscopy (SEM). In 
this way the evaluation of the displacement field can 
be performed, free from the errors and restrictions 
which influence the previously mentioned methods. It 
is shown in the paper that the computation of the 
displacement field and the evaluation of the stress 
intensity factor (SIF), as well as the determination of 
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Figure l(a, b) Geometry of an edge crack. 

the crack shape under loading was achieved in an 
accurate manner by this technique. 

2 .  T h e o r e t i c a l  c o n s i d e r a t i o n s  
We consider an elastic body under plane stress con- 
ditions with finite dimensions containing an edge 
crack 0C, shown in Fig. la, and a system of coordina- 
tes Oxy with origin at the tip of the crack. We apply a 
stress a~ at infinity of  the plate and along the 0y axis. 
The generic points A(x~, Yl), B(x2, Y2) in the vicinity 
of the crack tip move during deformation to the new 
positions A'(x~ + u l , y  ~ + %),  B'(x2 + u2, y2 + v2) 
where uj, v~ and u 2, v2 are the displacements of A and 
B, respectively. 

The distance (A'B' )  is given by: 

(A'B')  = (x2 + l /2 - -  X1 - -  / ' / I )  2 

4- (Y2 4- 732 - -  Yl - -  2 ) 1 )  2 (l) 

which, after some algebra, and introducing the rela- 
tions 

/3 2 - -  /d 1 = A u ,  73 2 -- Vl = Av (2) 

yields 

(A' B') 2 = (AB) 2 + (Au) 2 4- (679) 2 4- 2(x2 - X l ) Z ~ / , /  

+ 2(y~ - y~)Av (3) 

Ignoring the terms (Au) 2, (Av) 2 in Equation 3, which 
are much smaller than the other terms for infinitesimal 
displacements, we derive 

(A'B')  2 -- (AB) 2 = 2(x 2 -- x , ) A u  

4- 2(y2 -- Y,)Av (4) 

Moreover, due to the infinitesimal displacements of 
points A, B we may assume that 

(A'B' )  4- (AB) = 2(AB) (5) 

and Equation 4 becomes 

- -  Y2 - Yl (AB) - x; xl (Au) + (Av) (6) 
(AB)  (AB)  

If the polar coordinates for points A, B are (rA, 0) and 
(%, 0), respectively, i.e. if these points are assumed 
along a polar radius from the crack tip (Fig. l b), we 
have 

X2 --  Xl Y2 - -  Y l  
- cos0, - sin0 (7) 

(AB) (AB) 

Thus, Equation 6 becomes 

A(AB) = (Au) cos0 + (Av) sin0 (8) 

On the other hand, the u, v-displacements for a given 
point for the problem under consideration are 
expressed by [13] 

l 
u(r, O) - 2# ~ [ r ( n - I / 2 ) d 2 n - l f 3 ( n '  O) 

+ r~d2nA(n, 0)] cosO 

1 
2# ~ jr("- t/2) d 2 n -  I f ll (n, O) 

+ F' d2. A (n, 0)] sin 0 (9) 

v(r, O) = 1 ~. [rl,_,/2)d2,_ ' f3(n, O) 
# 

+ r n d2. f4 (n, 0)] sin 0 

1 
4- -- E [r(n-l/2)d2n - I  f l (  n' 0) 

# 

+ r~d2.f2(n, 0)] cos0 (10) 

where 

f~ (n, 0) 
f- ( -  1)nL( ~ + n - 4a) sin (n - ~ )0  

f2(n, 0) = ( - 1 ) " [ ( n -  a) s i n ( n -  1)0 

- (n + 1)sin (n + 1)0] (11) 

f3(n, 0) = ( - l ) " [ ( ~ - n - 4 a ) c o s ( n - - 3 ) 0  

+ (n - ~-)cos (n + �89 

f4(n, 0) = ( - 1 ) " + J [ ( 3 -  n -  4a) c o s ( n -  1)G 

+ (n + 1)cos (n + 1)0] 

In these relations # is the shear modulus of the mater- 
ial, E is the elastic modulus, v the Poisson ratio, and 
di unknown coefficients, whereas it is valid that 
c~ = v/(1 + v) for plane stress and a = v for plane 
strain. Applying Equation 9 at the points A(rA, 0) 
and B(r B, 0) and considering Au = (UA-  UB), 
Av = (VA -- VB) we derive the following equations 

1 .-1/2 
Au - 2# ~' [(r~-l/2 - -  r~ )d2n  l f 3 ( F / ,  0 )  C O S 0  

+ (r~ - ~)a2, ,A(n,  0) cos0] 

1 
2# Z [(r"A -~/2 -- rB-l/a)d2,-I fL(n, O) sin 0 

+ (r~A -- 6 )d2 , f2 (n ,  O) sin0] (12) 
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1 
Av = •  [(6 -'/2 - ~- ' /2 )d2 ,_ , f3 (n ,  O) sin0 

/2 

+ (~  - ~ )  d2, f4 (n, 0) sin 0] 

1 
+ -Y', [(~A -'/2 -- r~-l/2)d2, , f l ( n ,  O) cos 0 

# 

+ (r~ -- 4)d2nf2(n ,  O) cos0] (13) 

Introducing the values for Au and Av from these 
relations into Equation 8 we derive 

1 
A(AB) = ~ ~ d2,_,(r~ -'/2 - 4 -1/2) 

• [f3(n, 0) cos 0 - fl(n, 0) sin0]cos0 

1 
+ "~-~p~d2n(rnA -- r~)[f4(n, 0)cos0 

- - f2 (n ,  O) sin0] cos0 

1 
+ ~ ~" dz,_l(r~ -'/2 - ~-x/z)[2f3(n, O) sin0 

+ 2fl (n, 0) cos 0] sin 0 

1 
+ ~ ~ d2, ( 6  - 4 )  [2f4 (n, 0) sin 0 

+ 2fz(n, 0) cos0]sin0 (14) 

Equation 14, after some straightforward algebra, may 
be written in the form 

dz._, tl (n, rA, r . ,  0) 

+ ~ d2.t2(n, rA, rB, 0) = 2#A(AB) (15) 

where the quantities fi and t2 are expressed by 

tl(n, rA, rB, O) = (r"A -1/2 -- 4 I/2) 

• [f3(n, 0)(1 + sin20) + f~(n, 0) sin0 cos0] 

(16) 
and 

t2(n, rA, rB, O) = ( 6  -- ~ )  

x [f4(n, 0)(1 + sin20) + f2(n, 0) cos0 sin0] (17) 

Equation 15 connects the unknown coefficients d~ 
(i = 1, 2 . . . . .  2n) with the already known quantities 
rA, rB, 0 and A(AB). In the case where we consider 2n 
measurements for A(AB), we get 2n equations from 
Equation 15 consisting of a linear system of equations 

AX = B (18) 

where 

x, = di (i = 1 , 2 , . . . , 2 n )  (19) 

are the elements of the vector X, and 

bi = 2#A(AB) (i = 1, 2 . . . . .  2n) (20) 

are the elements of vector B and ao are the known 
elements of matrix A, which take the values 

o0 00 - -  FA, i ,  rB,i, 

with 

and 

with 

i = 1 , 2 , 3 , . . . , 2 n  

j = 1 , 3 , 5 , . . . , 2 n -  1 (21) 

J 0i) a U = t2 -~, rA , i ,  FB,i 

i =  1 ,2 ,3  . . . . .  2n 

j = 2, 4, 6 . . . .  ,2n  (22) 

Solving Equations 11 we can calculate the unknown 
coefficients of the terms of Equations 9 and 10 
through which we may compute the displacements u, v 
in each point of the body. 

3. Experimental results 
In order to calculate the displacement field around the 
tip of an edge crack and the value of the stress inten- 
sity factor a series of experiments were done using the 
scanning electron microscope. 

The microscope was the $4-10 scanning electron 
microscope made by Cambridge Scientific Instru- 
ments and the stereoscan tensile specimen stage, con- 
venient to apply tensile loading to the tested specimens 
at different temperatures. SEM parameters were: 
beam voltage 20 kV, beam current 200 mA, filament 
current 3.5A, jaw velocity varying 0.001 to 
1.0 mm min- 1 and maximum load capacity 2226 N. 

The specimens were put in the tensile specimen 
stage of the microscope and submitted to a constant 
strain rate ~ = 1.3 x 10-3sec -1. In each step of load- 
ing the crack tip zones were photographed, using a 
magnification factor from 200 to 1000. 

The specimens were made from Plexiglas plates 
with the following mechanical properties: shear 
modulus # = 125 x 107Nm -2 and Poisson ratio 
v = 0.30, while the dimensions of the specimens were: 
length l = 35mm, width w = 6mm, thickness 
d = 2mm. Natural edge cracks were formed in the 
specimens by using a fatigue procedure with lengths 
varying from 0.4 to 1.5 ram. 

All specimens were coated with an aluminium coat- 
ing to prevent charging effects on their surface from 
the high voltage of the electron beam. On the other 
hand, by using the electron beam a series of spots in 
radial directions were created on the surface of the 
specimens (see Fig. 2). The direct measurement of the 
distance between two neighbouring spots in two suc- 
cessive steps of load, permits the computation of the 
quantity A(AB) in Equation 15. In each test 20 to 30 
such measurements were performed. Hence, from 
Equation 18 the coefficients of the series given in 
Equations 9 and 10 were computed and finally the 
displacements u, v for every point in the plane were 
evaluated. Moreover, the stress intensity factor can be 
computed from these measurements because it is 
related with the coefficient of the first term of the series 
expansion in Equations 9 and 10. 

The experimental results for the displacements u, v 
are plotted in Figs 3 and 4, for various angles 0 from 
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Figure 2 Series of photographs showing the shape of the crack 
under different loads. 

0 ~ to 180 ~ and for various distances for the crack-tip 
0, normalized to the distance a, equal to the edge- 
crack length. It is seen that the v-displacements 
increase with angle 0 and distance from the crack tip, 
with the largest values o fv  at 0 = 180 ~ corresponding 
to the crack lips. On the contrary, u-displacements 
present maximum values at 0 = 0 ~ and decrease with 
this angle, reaching negative values for 0 = 180 ~ This 
means that the lips of the crack having u < 0 behave 
in a way resulting in a shortening of the crack length. 
With known values of  u, v for 0 = 180 ~ the shape of  

the crack under loading may be reconstructed as given 
in Fig. 5, which almost coincides with an elliptical 
form. 

The values of SIF as determined from the coefficient 
of  the first term of the series are given in Fig. 6, 
together with their approximate values obtained for 
the same geometry and loading from Gray [14], and 
Bowie [15]. It is apparent from this figure that the 
experimental data and the theoretical approximations 
are in good agreement. 

4. D i s c u s s i o n  
In the present paper the displacement field around the 
crack-tip and the corresponding SIF were computed 
by means of  direct measurements performed in the 
SEM. 

The advantage of the present method lies in the fact 
that the measurements made during the tests are inde- 
pendent of  any coordinate system. This independence 
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Figure 3 Variation of u-displacement with r/a ratio. 
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Figure 5 The shape of a loaded edge crack. 

contributes significantly to the accuracy of the method 
in evaluating elastic, and particularly, plastic displace- 
ments, because, as is known, the crack-tip moves 
during loading, resulting in erroneous measurements 
related to an absolute coordinate system. 

In addition, the decoupling of measurements from 
any coordinate system, permits high magnifications to 
be used and high accuracy to be achieved in the 
evaluation of distances between given points. The 
same property also allows the performance of meas- 
urements in the close vicinity of the crack-tip, an area 
which is normally forbidden for other experimental 
methods. 

The results presented in this paper yield informa- 
tion concerning especially crack-opening displace- 
ments at the crack tips, thus permitting the exact 
definition of the crack shape under loading. In addi- 
tion, experimental evaluation of SIF showed good 
agreement with existing approximate methods. This 
evaluation may be executed either from the definition 
of the factor of the first term in the series expansion, 
or, and perhaps much better, through the values of 
CODs accurately defined along the crack tips. 
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